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Introduction
Both acute and chronic hepatic dysfunctions are increasing 
globally which contributes to hepatic failure [1]. Consumption 
of alcoholic beverages, fatty foods, taking unnecessary over the 
counter (OTC) drugs and leading a sedentary lifestyle serves as the 
main contributing factor for the development of hepatic damages 
[2]. As the extent of mortality and morbidity is increasing at 
an alarming rate, consequently it is capturing the attention of 
current public health care professionals [3]. Drugs induced liver 
toxicity has often been observed when a therapy fails or shows 
harmful adverse drug reaction (ADR) [4]. However, in most 
of the cases, normal hepatic functions are being hampered by 
either free radicals mediated oxidative stress or inflammatory 
cytokines [5]. Taken together, hepatic disturbances often assist in 
collagen production, extra cellular matrix deposition [6], mast cell 
accumulation [7], hemeoxygenase degradation [8], migration and 
infiltration of various immune cells [9] which lead to cirrhosis, 
hepatitis, hypertrophy, carcinoma and liver failure [10].W

Liver dysfunction is often observed due to overproduction of 
Ang II in the liver, activating local RAS that helps in free radicals 

generation, vascular damage, cellular growth and apoptosis 
through immune cell migration [11]. In addition, Ang II 
concentration in serum is found higher in patients suffering 
from chronic hepatitis C or prone to genetic polymorphism [12]. 
Inside the liver, Ang II generally binds with AT1R which activates 
Hepatic stellate cells (HSC) that further initiates its downstream 
pathway [13]. Furthermore, Ang II-AT1R interaction also activates 
local macrophages to release various cytokines like nuclear factor 
and-κβ (NF-κβ) macrophage inflammatory protein (MIP), SMAD, 
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Cyclooxygenase 2 and other chemokines [14,15]. Study also 
revealed that mice lacking AT1R genetically were able to attenuate 
hepatic inflammation [16]. Other studies also discussed that 
hepatic Ang  II also attracts several downstream molecules like  
α-smooth muscle actin, β-actin, human leukocyte antigen (HLA), 
and other chemokines [18,19].

Mitogen activated protein kinases (MAPKs) have been extensively 
studied and found to be responsible for several types of 
inflammation through AT1R interaction [20]. MAPK also plays a 
pivotal role in the progression of several pathophysiologies like 
hepatitis, fibrosis, iron deposition, hypertrophy and apoptosis 
[21]. It is noticed that MAPK, which is a signaling pathway is 
activated when an extracellular molecules binds on it and then 
transmitting signals to the intracellular machinery process 
through G protein-coupled receptor [22]. Interestingly, MAPK 
has been also blamed as stress activated protein kinases (SAPKs), 
mostly activated by environmental as well as chemical stress, that 
further plays a key role in the processing of different chemical 
and cellular responses [23]. Surprisingly, it is experimented that 
MAPK is solely responsible for hepatic inflammatory signaling like 

nuclear factor–κβ, interleukin-6, endothelin-1 (ET-1), activating 
protein-1 too [24]. Furthermore, MAPK mediated signaling 
significantly contribute to several cancers [25,26]. Not only for 
clinical significance but also for therapeutic approaches, MAPK 
and Ang II-AT1R interaction have been exclusively important for 
elucidating several diseases as well as to make a target molecule 
against MAPK. Therefore, this review will try to explore the 
molecular mechanisms inside liver involving various inflammatory 
signaling that leads to hepatic inflammation.

Angiotensin II and MAPK
RAS is a very wide and important pathway which coordinate 
several biological functions like regulation of blood pressure, 
cellular growth, production of extra cellular matrix, stimulation 
of proinflammatory or inflammatory cytokines and initiates 
apoptosis if necessary [27]. This pathway is generally activated 
once renin is available inside circulation. Renin, which is a 
protease enzyme produced from the kidney, converts liver 
angiotensinogen to angiotensin I. Furthermore, angiotensin  I 
is converted to Angiotensin I and Angiotensin II when either 

Figure 1 Production of AngiotensinII and related organ dysfunctions.  Production of AngiotensinII and related organ dysfunctions.Figure 1
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pulmonary ACE or tissue chymase or cathepsin are available via 
G protein-coupled receptor (Figure 1) [28]. So far, several types 
of angiotensin (I-XII) have been isolated from various models and 
those are activated through AT1R and AT2R [29]. Angiotensin can 
be activated in both circulation and tissue due to the availability 
of its receptors throughout the body [30]. It has been also noticed 
that activation of AT2R often brings some protective effects 
like reduced inflammation via epoxyeicosatrienoic acid and by 
inhibiting nuclear factor -κβ [31]. Another study explained that 
Ang II induce arterial pressure can be reduced by the activation 
of AT2R in rat model [32].A cross study has also been found which 
explained that deletion of AT2R may protect from dietinduced 
obesity and insulin resistance in rats [33].

On the other hand it is highly established that Ang II-AT1R binding 
mostly signals through MAPK pathway that promotes cellular 
growth and inflammation [34]. However, MAPK often serves 
a huge number of fundamental cellular processes to exchange 
extracellular and intracellular information [35]. Within the 
endoplasmic reticulum (ER), generally three core types of MAPK 
are found which are MAP3K, MAPKK, and MAPK. Beside this, 
downstream kinase (MAPKAPK) and upstream kinase (MAP4K) 
are also noticed. Inside the mammalian MAPK cascade, four 
different kinds of MAPK were isolated and named as MAPK 
p38, ERK5, cJun N terminal kinase (JNK) and extracellular signal
regulated kinase 1 and 2 (ERK1/2) respectively [36].

Ang II and MAPK in hepatic free radicals 
generation
Free radicals are highly reactive molecules which directly damage 
cell membrane, cytoplasm as well as nucleus [37]. The prime 
members of this family are reactive oxygen species and reactive 
nitrogenous species that hamper the normal cellular activity 
and produces oxidative stress [38]. However, free radical as 
well as oxidative stress mediated hepatic dysfunction has been 
noticed enormously by disturbing liver Cytochrome P450 system 
[39]. Oxidative stress markers have also been identified inside 
the serums who were suffering from chronic hepatitis C [40]. 
Furthermore, hepatic tissue injuries are very common when 
free radicals like •OH, •O

2-, and H2O2 are generated inside liver 
[41]. Although Ang II is mainly responsible for controlling blood 
pressure, it also significantly generates free radical when it is 
attached with AT1R [42]. Study also suggested that Ang II-AT1R 
interaction stimulates NAD(P)H oxidase (NOX) and generates 
ROS and RNS which further stimulates several proinflammatory 
cytokines [11,43]. Mitogen activate protein kinase also 
participates in generation of free radicals which is mostly noticed 
via NAD(P)H oxidase (NOX)  4 and AKT1-AKT2 (protein kinase 
B) pathway [44,45]. Another study explained that activation of 
p38MAPK was observed in ATP depleted hepatic stellete cells 
(HSCs) culture. The study also described that p38MAPK depended 
reactive oxygen species (ROS) declined number of normal HSCs 
[46,47]. One of the crucial studies explored that reactive oxygen 
species contribute significantly in development of several cancers 
by stimulating different cytokines [48].

Ang II and MAPK in diabetes
Diabetes, a heterogeneous metabolic disorders which not 

only affects pancreas but also hampers normal functioning 
of liver [49]. Nonalcoholic liver diseases and diabetes are the 
two major components of metabolic syndrome [50]. Inside the 
liver, high glucose concentration may alter cellular homeostasis 
[51] and might induce several pathological events [52]. Taken 
together, the complication of diabetes can activate hepatic Ang 
II [53] which further induces MAPK family [54] that possesses 
several inflammatory cytokines like activated protein-1,tumor 
necrosis factor-α, and nuclear factor-κβ, and many others [55]. 
Inflammatory cytokines further responsible for the development 
of liver cirrhosis, cancer and liver failure if not treated with care 
[56]. However, chronic diabetic status also triggers collagen and 
extracellular matrix production in liver which further develop 
hepatic fibrosis [57,58].

Ang II and MAKP in hepatic inflammation
Biological subjects are always exposed to its surrounding 
environment, at the same time they also need food and air to 
survive. Unfortunately, environment carries several foreign 
harmful elements which often invade inside biological system 
and activates host immunity [65]. On the other hand, liver 
serves various protective roles by producing several growth 
factors, antibody and other immune components to fight against 
harmful stimuli [66]. Once those foreign elements invade into 
hepatic tissue, liver immediately attracts neutrophil, T cell, local 
macrophages, β integrin and natural killer cells [67]. The evidences 
for the role of Ang II and MAPKs in the development of hepatic 
inflammation are summarized in Table 1. It is highly suggested 
that Angiotensin II often stimulates immune cells by activating 
kupffer cell to invite monocytes, killer cells, tumor necrosis factor 
and interleukins [68]. Local hepatic renin angiotensin system 
is also regulated by chronic liver injury which simultaneously 
activates some events such as recruitment of inflammatory cells 
and generation of free radicals [69]. Angiotensin related hepatic 
inflammation often showed elevated level of liver marker such 
as AST, ALP and ALT which confirms hepatic tissue injury [70]. 
Study also explored that MAPK which is activated by Ang II 
solely participates in hepatic inflammation [71]. Another study 
disclosed that MAPK-JNKs remarkably serve inflammation [72]. 
A hypothetical mechanism for Ang II and MAPKs mediated 
inflammatory response has been proposed in Figure 2.

New promising molecules against MAPK family
Researchers always try hard to develop a potent molecule against 
any kind of pathogenesis. Various molecules have been tested 
against angiotensin and related family. There is no such potent 
MAPK inhibitor has been established yet. Some good activities 
have been showed by few molecules but they need proper 
trial [73,74] and their effects on various experimental animal 
models are summarized in Table 2. BI78D3, an inhibitor of JNK 
showed prevention of JNK phosphorylation and ameliorates JNK 
dependent liver damage [75]. Another JNK inhibitor SP600125 
showed promising effect on preventing the JNK expression and 
its activity in HeLa cells [76]. Furthermore, animal studies also 
showed that CNI1493 may prevent p38 MAP kinase signalling 
cascade and reduced TNF-α level in collagen induced arthritis rats 
[77]. Inhibition of p38 MAP kinase signalling cascade by SB203580 
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their side effects and adverse drug reaction profiles are not 
established fully. A selective inhibitor of p38 mitogenactivated 
protein kinase, BIRB796, is such a molecule which activates the 

Models Outcomes of the study References

HSCT6 cells
Ang II caused HSC to produce ECM via activation of ERK and cJun.

[59]
Expression of AT1R found high due to Ang II.

Male Sprague Dawley 
rats

Angiotensin (1-7) blocked liver inflammation by inhibiting MAPK expression.
[60]

Reduced TLR-4 and NF-κβ expression in liver.

Male Sprague Dawley 
rats

Activation of liver injury is mediated by MAPK over expression.
[61]

Ang II induces oxidative stress, hepatic inflammation, and vascular damage and thus resulting liver injury.

Male Sprague Dawley 
rats

Ang II increased phosphorylation of cJun and ERK-2.
[11]

It signaled proinflammatory cytokines via MAPK signaling.
Male Sprague Dawley 

rats MAPK family caused proinflammatory cytokine synthesis such as IL-6, and TNF-α in HSCs. [62,63]

Sprague Dawley wild
type rats Ang II causes the activation of Janus Kinase 2 in liver dysfunction via several cytokines productions. [64]

Table 1 Role of Ang II on hepatic inflammation via several members of MAPK 
family.

The possible pathway describes when Angiotensin 2 binds with angiotensin type 1 receptor it activates the mitogen activated protein 
kinase (MAPK), at the same time generation of free radicals and NADPH oxidase(NOX4) also gets activated, but these molecules 
also activates MAPK. Activation of NF-kβ is caused either by JNK-JUN pathway or by p38-IKK-IKB pathway; these activation will 
facilitate the production of mRNA of Proinflammatory cytokines such as TGF-β, TNF-α, and IL-6. Produced Interleukin(IL-6) binds 
with IL-6 receptor, and activates STAT-3 through JAK-STAT pathway to produce ICAM, MCP which assist in inflammation. Tumor 
Necrosis Factor(TNF-α) after binding with its receptor within the cell membrane activates Tumor necrosis factor receptor type 
1associated DEATH domain (TRADD) which triggers TNF receptor-associated factor 2 (TNFR2) that stimulates Activated protein(AP 
1) by p38MK2 pathway to initiate the production of proinflammatory cytokines.

Figure 2

also restored the development and cellular proliferation in 
developing liver [78]. However, these newly developed molecules 
showed promising results in various in vitro and in vivo assays, 
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nuclear factor (erythroidderived 2)like 2 signaling pathway [79]. 
However, a reactive intermediate of BIRB796 could be found both 
in mouse and human liver microsomes which is responsible for 
the development of BIRB796's hepatotoxicity [79].

Conclusion and Future Directions
Ang II induced hepatic inflammation via MAPK suggests several 
pathways. Firstly, Ang II interacts with AT1R, stimulates Gprotein 
couple receptor (GPCR) and then activates MAPK, resulted free 
radicals generation, later sends stimulation for inflammatory 
and proinflammatory molecules and production of other growth 
factors which finally contribute hepatic inflammation or hepatitis. 
MAPKs are important signaling molecules in several pathways in 
liver physiology and disease pathogensis. In many pathologic 
processes, JNK1 is found responsible. MAPK and other members 
of this family regulate multiple pathophysiologic processes, 
including liver cell death, steatosis, inflammation, fibrosis and 
many more. So a therapy must be established against hepatitis 
inducted by MAPK. Several other molecules are already in 
development processes which need to be properly testified 
through clinical trial.

Molecules Models Outcome of the study References

BI78D3
Diabetic Mice 
and Human 
prostate tissue

Inhibited the phosphorylation 
of JNK substrates in the cell

[75,80]Blocked JNK dependent liver 
damage and restores insulin 
sensitivity.

SP600125 HeLa cell culture Inhibited JNK catalytic activity [76]

CNI1493 Rat model

Reduced TNF-α and 
macrophage mediated 
inflammation through p38 
MAP kinase signalling cascade

[77]

SB203580 Fetal rat 
hepatocytes

Inhibited p38 mitogen
activated protein kinase 
pathway in hepatocyte

[78]

BIRB796 Male mice The selective activity of BIRB796 induced [79] 
nuclear factor (erythroid ‐derived 2)‐ like 2 signaling in the liver.

Table 2 Role of new molecules on MAPK family.
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