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Introduction
Both	 acute	 and	 chronic	 hepatic	 dysfunctions	 are	 increasing	
globally	 which	 contributes	 to	 hepatic	 failure	 [1].	 Consumption	
of	alcoholic	beverages,	fatty	foods,	taking	unnecessary	over	the	
counter	(OTC)	drugs	and	leading	a	sedentary	lifestyle	serves	as	the	
main	contributing	factor	for	the	development	of	hepatic	damages	
[2].	 As	 the	 extent	 of	 mortality	 and	 morbidity	 is	 increasing	 at	
an	 alarming	 rate,	 consequently	 it	 is	 capturing	 the	 attention	 of	
current	public	health	care	professionals	[3].	Drugs	induced	liver	
toxicity	has	often	been	observed	when	a	therapy	fails	or	shows	
harmful	 adverse	 drug	 reaction	 (ADR)	 [4].	 However,	 in	 most	
of	 the	 cases,	 normal	 hepatic	 functions	 are	 being	 hampered	by	
either	 free	 radicals	 mediated	 oxidative	 stress	 or	 inflammatory	
cytokines	[5].	Taken	together,	hepatic	disturbances	often	assist	in	
collagen	production,	extra	cellular	matrix	deposition	[6],	mast	cell	
accumulation	[7],	hemeoxygenase	degradation	[8],	migration	and	
infiltration	 of	 various	 immune	 cells	 [9]	which	 lead	 to	 cirrhosis,	
hepatitis,	hypertrophy,	carcinoma	and	liver	failure	[10].W

Liver	 dysfunction	 is	 often	 observed	 due	 to	 overproduction	 of	
Ang	II	in	the	liver,	activating	local	RAS	that	helps	in	free	radicals	

generation,	 vascular	 damage,	 cellular	 growth	 and	 apoptosis	
through	 immune	 cell	 migration	 [11].	 In	 addition,	 Ang	 II	
concentration	 in	 serum	 is	 found	 higher	 in	 patients	 suffering	
from	chronic	hepatitis	C	or	prone	to	genetic	polymorphism	[12].	
Inside	the	liver,	Ang		II	generally	binds	with	AT1R	which	activates	
Hepatic	stellate	cells	(HSC)	that	further initiates	its	downstream	
pathway	[13].	Furthermore,	Ang	II-AT1R	interaction	also	activates	
local	macrophages	to	release	various	cytokines	like	nuclear	factor	
and-κβ	(NF-κβ)	macrophage	inflammatory	protein	(MIP),	SMAD,	
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Cyclooxygenase	 	2	 and	 other	 chemokines	 [14,15].	 Study	 also	
revealed	that	mice	lacking	AT1R	genetically	were	able	to	attenuate	
hepatic	 inflammation	 [16].	 Other	 studies	 also	 discussed	 that	
hepatic	 Ang		 II	 also	 attracts	 several	 downstream	molecules	 like			
α-smooth	muscle	actin,	β-actin,	human	leukocyte	antigen	(HLA),	
and	other	chemokines	[18,19].

Mitogen	activated	protein	kinases	(MAPKs)	have	been	extensively	
studied	 and	 found	 to	 be	 responsible	 for	 several	 types	 of	
inflammation	 through	AT1R	 interaction	 [20].	MAPK	also	plays	 a	
pivotal	 role	 in	 the	progression	of	several	patho	physiologies	 like	
hepatitis,	 fibrosis,	 iron	 deposition,	 hypertrophy	 and	 apoptosis	
[21].	 It	 is	 noticed	 that	 MAPK,	 which	 is	 a	 signaling	 pathway	 is	
activated	when	an	extracellular	molecules	binds	on	 it	and	then	
transmitting	 signals	 to	 the	 intracellular	 machinery	 process	
through	 G	 protein-coupled	 receptor	 [22].	 Interestingly,	 MAPK	
has	been	also	blamed	as	stress	activated	protein	kinases	(SAPKs),	
mostly	activated	by	environmental	as	well	as	chemical	stress,	that	
further	plays	 a	 key	 role	 in	 the	processing	of	 different	 chemical	
and	cellular	responses	[23].	Surprisingly,	it	is	experimented	that	
MAPK	is	solely	responsible	for	hepatic	inflammatory	signaling	like	

nuclear	 factor–κβ,	 interleukin-6,	 endothelin-1	 (ET-1),	 activating	
protein-1 too [24].	 Furthermore,	 MAPK	 mediated	 signaling	
significantly	 contribute	 to	 several	 cancers	 [25,26].	Not	 only	 for	
clinical	 significance	but	 also	 for	 therapeutic	 approaches,	MAPK	
and	Ang	 II-AT1R	interaction	have	been	exclusively	 important	for	
elucidating	several	diseases	as	well	as	to	make	a	target	molecule	
against	 MAPK.	 Therefore,	 this	 review	 will	 try	 to	 explore	 the	
molecular	mechanisms	inside	liver	involving	various	inflammatory	
signaling	that	leads	to	hepatic	inflammation.

Angiotensin II and MAPK
RAS	 is	 a	 very	 wide	 and	 important	 pathway	 which	 co	ordinate	
several	 biological	 functions	 like	 regulation	 of	 blood	 pressure,	
cellular	growth,	production	of	extra	cellular	matrix,	 stimulation	
of	 pro	inflammatory	 or	 inflammatory	 cytokines	 and	 initiates	
apoptosis	 if	 necessary	 [27].	 This	pathway	 is	 generally	 activated	
once	 renin	 is	 available	 inside	 circulation.	 Renin,	 which	 is	 a	
protease	 enzyme	 produced	 from	 the	 kidney,	 converts	 liver	
angiotensinogen	 to	 angiotensin	 I.	 Furthermore,	 angiotensin		 I	
is	 converted	 to	 Angiotensin	 I	 and	 Angiotensin	 II	 when	 either	

Figure 1 Production of AngiotensinII and related organ dysfunctions.  Production	of	Angiotensin	II	and	related	organ	dysfunctions.Figure 1
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pulmonary	ACE	or	tissue	chymase	or	cathepsin	are	available	via	
G	protein-coupled	receptor	(Figure 1)	[28].	So	far,	several	types	
of	angiotensin	(I-XII)	have	been	isolated	from	various	models	and	
those	are	activated	through	AT1R	and	AT2R	[29].	Angiotensin	can	
be	activated	in	both	circulation	and	tissue	due	to	the	availability	
of	its	receptors	throughout	the	body	[30].	It	has	been	also	noticed	
that	 activation	 of	 AT2R	 often	 brings	 some	 protective	 effects	
like	 reduced	 inflammation	 via	 epoxyeicosatrienoic	 acid	 and	 by	
inhibiting	nuclear	 factor	 -κβ	 [31].	Another	 study	explained	 that	
Ang	II	induce	arterial	pressure	can	be	reduced	by	the	activation	
of	AT2R	in	rat	model	[32].A	cross	study	has	also	been	found	which	
explained	 that	 deletion	 of	 AT2R	may	 protect	 from	 dieti	nduced	
obesity	and	insulin	resistance	in	rats	[33].

On	the	other	hand	it	is	highly	established	that	Ang	II-AT1R	binding	
mostly	 signals	 through	 MAPK	 pathway	 that	 promotes	 cellular	
growth	 and	 inflammation	 [34].	 However,	 MAPK	 often	 serves	
a	 huge	 number	 of	 fundamental	 cellular	 processes	 to	 exchange	
extracellular	 and	 intracellular	 information	 [35].	 Within	 the	
endoplasmic	reticulum	(ER),	generally	three	core	types	of	MAPK	
are	 found	 which	 are	 MAP3K,	 MAPKK,	 and	MAPK.	 Beside	 this,	
downstream	 kinase	 (MAPKAPK)	 and	 upstream	 kinase	 (MAP4K)	
are	 also	 noticed.	 Inside	 the	 mammalian	 MAPK	 cascade,	 four	
different	 kinds	 of	 MAPK	 were	 isolated	 and	 named	 as	 MAPK	
p38,	ERK5,	c	Jun	N		terminal	kinase	(JNK)	and	extracellular	signal-
regulated	kinase	1	and	2	(ERK1/2)	respectively	[36].

Ang II and MAPK in hepatic free radicals 
generation
Free	radicals	are	highly	reactive	molecules	which	directly	damage	
cell	 membrane,	 cytoplasm	 as	 well	 as	 nucleus	 [37].	 The	 prime	
members	of	this	family	are	reactive	oxygen	species	and	reactive	
nitrogenous	 species	 that	 hamper	 the	 normal	 cellular	 activity	
and	 produces	 oxidative	 stress	 [38].	 However,	 free	 radical	 as	
well	as	oxidative	stress	mediated	hepatic	dysfunction	has	been	
noticed	enormously	by	disturbing	liver	Cytochrome	P	450	system	
[39].	 Oxidative	 stress	markers	 have	 also	 been	 identified	 inside	
the	 serums	 who	 were	 suffering	 from	 chronic	 hepatitis	 C	 [40].	
Furthermore,	 hepatic	 tissue	 injuries	 are	 very	 common	 when	
free	radicals	 like	•OH,	•O 

2-,	and	H2O2 are	generated	 inside	 liver	
[41].	Although	Ang	II	 is	mainly	responsible	for	controlling	blood	
pressure,	 it	 also	 significantly	 generates	 free	 radical	 when	 it	 is	
attached	with	 AT1R [42].	 Study	 also	 suggested	 that	 Ang	 II-AT1R 
interaction	 stimulates	 NAD(P)H	 oxidase	 (NOX)	 and	 generates	
ROS	and	RNS	which	further	stimulates	several	pro	inflammatory	
cytokines	 [11,43].	 Mitogen activate	 protein	 kinase	 also	
participates	in	generation	of	free	radicals	which	is	mostly	noticed	
via	 NAD(P)H	 oxidase	 (NOX)		 4	 and	 AKT1-AKT2	 (protein	 kinase	
B)	 pathway	 [44,45].	Another	 study	explained	 that	 activation	of	
p38MAPK	 was	 observed	 in	 ATP	 depleted	 hepatic	 stellete	 cells	
(HSCs)	culture.	The	study	also	described	that	p38MAPK	depended	
reactive	oxygen	species	(ROS)	declined	number	of	normal	HSCs	
[46,47].	One	of	the	crucial	studies	explored	that	reactive	oxygen	
species	contribute	significantly	in	development	of	several	cancers	
by	stimulating	different	cytokines	[48].

Ang II and MAPK in diabetes
Diabetes,	 a	 heterogeneous	 metabolic	 disorders	 which	 not	

only	 affects	 pancreas	 but	 also	 hampers	 normal	 functioning	
of	 liver	 [49].	 Non	alcoholic	 liver	 diseases	 and	 diabetes	 are	 the	
two	major	components	of	metabolic	 syndrome	[50].	 Inside	 the	
liver,	high	glucose	concentration	may	alter	cellular	homeostasis	
[51]	 and	 might	 induce	 several	 pathological	 events	 [52].	 Taken	
together,	the	complication	of	diabetes	can	activate	hepatic	Ang	
II	 [53]	 which	 further	 induces	MAPK	 family	 [54]	 that	 possesses	
several	 inflammatory	 cytokines	 like	 activated	 protein-1,tumor	
necrosis	 factor-α,	and	nuclear	 factor-κβ,	and	many	others	 [55].	
Inflammatory	cytokines	further	responsible	for	the	development	
of	liver	cirrhosis,	cancer	and	liver	failure	if	not	treated	with	care	
[56].	However,	chronic	diabetic	status	also	triggers	collagen	and	
extracellular	 matrix	 production	 in	 liver	 which	 further	 develop	
hepatic	fibrosis	[57,58].

Ang II and MAKP in hepatic inflammation
Biological	 subjects	 are	 always	 exposed	 to	 its	 surrounding	
environment,	 at	 the	 same	time	 they	also	need	 food	and	air	 to	
survive.	 Unfortunately,	 environment	 carries	 several	 foreign	
harmful	 elements	 which	 often	 invade	 inside	 biological	 system	
and	 activates	 host	 immunity	 [65].	 On	 the	 other	 hand,	 liver	
serves	 various	 protective	 roles	 by	 producing	 several	 growth	
factors,	antibody	and	other	immune	components	to	fight	against	
harmful	 stimuli	 [66].	 Once	 those	 foreign	 elements	 invade	 into	
hepatic	tissue,	liver	immediately	attracts	neutrophil,	T		cell,	local	
macrophages,	β		integrin	and	natural	killer	cells	[67].	The	evidences	
for	the	role	of	Ang	II	and	MAPKs	in	the	development	of	hepatic	
inflammation	are	 summarized	 in	Table 1.	 It	 is	highly	 suggested	
that	Angiotensin	 II	 often	 stimulates	 immune	 cells	 by	 activating	
kupffer	cell	to	invite	monocytes,	killer	cells,	tumor	necrosis	factor	
and	 interleukins	 [68].	 Local	 hepatic	 renin	 angiotensin	 system	
is also	 regulated	 by	 chronic	 liver	 injury	 which	 simultaneously	
activates	some	events	such	as	recruitment	of	inflammatory	cells	
and	generation	of	free	radicals	[69].	Angiotensin	related	hepatic	
inflammation	often	 showed	elevated	 level	of	 liver	marker	 such	
as	 AST,	 ALP	 and	 ALT	which	 confirms	 hepatic	 tissue	 injury	 [70].	
Study	 also	 explored	 that	 MAPK	 which	 is	 activated	 by	 Ang	 II	
solely	 participates	 in	 hepatic	 inflammation	 [71].	 Another	 study	
disclosed	 that	MAPK	-JNKs	 remarkably	 serve	 inflammation	 [72].	
A	 hypothetical	 mechanism	 for	 Ang	 II	 and	 MAPKs	 mediated	
inflammatory	response	has	been	proposed	in	Figure 2.

New promising molecules against MAPK family
Researchers	always	try	hard	to	develop	a	potent	molecule	against	
any	 kind	 of	 pathogenesis.	 Various	molecules	 have	 been	 tested	
against	angiotensin	and	related	 family.	There	 is	no	such	potent	
MAPK	 inhibitor	 has	been	established	 yet.	 Some	good	activities	
have	 been	 showed	 by	 few	 molecules	 but	 they	 need	 proper	
trial	 [73,74]	 and	 their	 effects	 on	 various	 experimental	 animal	
models	are	summarized	 in	Table 2.	BI	78D3,	an	 inhibitor	of	 JNK	
showed	prevention	of	JNK	phosphorylation	and	ameliorates	JNK	
dependent	 liver	 damage	 [75].	 Another	 JNK	 inhibitor	 SP600125	
showed	promising	effect	on	preventing	the	JNK	expression	and	
its	 activity	 in	HeLa	 cells	 [76].	 Furthermore,	 animal	 studies	 also	
showed	 that	 CNI	1493	 may	 prevent	 p38	MAP	 kinase	 signalling	
cascade	and	reduced	TNF-α	level	in	collagen	induced	arthritis	rats	
[77].	Inhibition	of	p38	MAP	kinase	signalling	cascade	by	SB203580	
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their	 side	 effects	 and	 adverse	 drug	 reaction	 profiles	 are	 not	
established	 fully.	 A	 selective	 inhibitor	 of	 p38	mitogen	activated	
protein	kinase,	BIRB796,	is	such	a	molecule	which	activates	the	

Models Outcomes	of	the	study References

HSC	T6	cells
	Ang	II	caused	HSC	to	produce	ECM	via	activation	of	ERK	and	c	Jun.

[59]
	Expression	of	AT1R	found	high	due	to	Ang	II.

Male	Sprague	Dawley	
rats

Angiotensin		(1-7)	blocked	liver	inflammation	by	inhibiting	MAPK	expression.
[60]

	Reduced	TLR-4	and	NF-	κβ	expression	in	liver.

Male	Sprague	Dawley	
rats

Activation	of	liver	injury	is	mediated	by	MAPK	over	expression.
[61]

	Ang	II	induces	oxidative	stress,	hepatic	inflammation,	and	vascular	damage	and	thus	resulting	liver	injury.

Male	Sprague		Dawley	
rats

Ang	II	increased	phosphorylation	of	c	Jun	and	ERK-	2.
[11]

	It	signaled	pro	inflammatory	cytokines	via	MAPK	signaling.
Male	Sprague		Dawley	

rats MAPK	family	caused	pro	inflammatory	cytokine	synthesis	such	as	IL-	6,	and	TNF	-α	in	HSCs. [62,63]

Sprague		Dawley	wild-
type	rats Ang	II	causes	the	activation	of	Janus	Kinase	2	in	liver	dysfunction	via	several	cytokines	productions. [64]

Table 1	Role	of	Ang	II	on	hepatic	inflammation	via	several	members	of	MAPK	
family.

The	possible	pathway	describes	when	Angiotensin	2	binds	with	angiotensin	type	1 receptor	it	activates	the	mitogen	activated	protein	
kinase	(MAPK),	at	the	same	time	generation	of	free	radicals	and	NADPH	oxidase	(NOX4)	also	gets	activated,	but	these	molecules	
also	activates	MAPK.	Activation	of	NF-kβ	is	caused	either	by	JNK-JUN	pathway	or	by	p38-IKK-IKB	pathway;	these	activation	will	
facilitate	the	production	of	mRNA	of	Pro	inflammatory	cytokines	such	as	TGF-β,	TNF-α,	and	IL-6.	Produced	Interleukin	(IL-6)	binds	
with	IL-6	receptor,	and	activates	STAT-3	through	JAK-STAT	pathway	to	produce	ICAM,	MCP	which	assist	in	inflammation.	Tumor	
Necrosis	Factor	(TNF-	α)	after	binding	with	 its	receptor	within	the	cell	membrane	activates	Tumor	necrosis	 factor	receptor	type	
1	associated	DEATH	domain	(TRADD)	which	triggers	TNF	receptor-associated	factor	2	(TNFR2)	that	stimulates	Activated	protein	(AP		
1)	by	p38	MK2	pathway	to	initiate	the	production	of	pro	inflammatory	cytokines.

Figure 2

also	 restored	 the	 development	 and	 cellular	 proliferation	 in	
developing	liver	[78].	However,	these	newly	developed	molecules	
showed	promising	 results	 in	various	 in vitro	and	 in vivo	assays,	



2016
Vol. 2 No. 2: 13

5© Under License of Creative Commons Attribution 3.0 License

Journal of  Hepatitis                                          
ISSN: 2471-9706

nuclear	factor	(erythroid	derived	2)	like	2	signaling	pathway	[79].	
However,	a	reactive	intermediate	of	BIRB	796	could	be	found	both	
in	mouse	and	human	liver	microsomes	which	is	responsible	for	
the	development	of	BIRB	796's	hepatotoxicity	[79].

Conclusion and Future Directions
Ang	 II	 induced	hepatic	 inflammation	via	MAPK	suggests	several	
pathways.	Firstly,	Ang	II	interacts	with	AT1R,	stimulates	G	protein	
couple	receptor	(GPCR)	and	then	activates	MAPK,	resulted	free	
radicals	 generation,	 later	 sends	 stimulation	 for	 inflammatory	
and	pro	inflammatory	molecules	and	production	of	other	growth	
factors	which	finally	contribute	hepatic	inflammation	or	hepatitis.	
MAPKs	are	important	signaling	molecules	in	several	pathways	in	
liver	 physiology	 and	 disease	 pathogensis.	 In	 many	 pathologic	
processes,	JNK1	is	found	responsible.	MAPK	and	other	members	
of	 this	 family	 regulate	 multiple	 patho	physiologic	 processes,	
including	 liver	 cell	 death,	 steatosis,	 inflammation,	 fibrosis	 and	
many	more.	So	a	therapy	must	be	established	against	hepatitis	
inducted	 by	 MAPK.	 Several	 other	 molecules	 are	 already	 in	
development	 processes	 which	 need	 to	 be	 properly	 testified	
through	clinical	trial.

Molecules Models Outcome	of	the	study References

BI	78D3
Diabetic	Mice	
and	Human	
prostate	tissue

	Inhibited	the	phosphorylation	
of	JNK	substrates	in	the	cell

[75,80]	Blocked	JNK	dependent	liver	
damage	and	restores	insulin	
sensitivity.

SP600125 HeLa	cell	culture 	Inhibited	JNK	catalytic	activity [76]

CNI	1493 Rat	model

	Reduced	TNF-	α	and	
macrophage	mediated	
inflammation	through	p38	
MAP	kinase	signalling	cascade

[77]

SB203580 Fetal	rat	
hepatocytes

	Inhibited	p38	mitogen-
activated	protein	kinase	
pathway	in	hepatocyte

[78]

BIRB796	Male	mice	The	selective	activity	of	BIRB796	induced	[79]	
nuclear	factor	(erythroid	-derived	2)-	like	2	signaling	in	the	liver.

Table 2 Role	of	new	molecules	on	MAPK	family.
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